Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus
نویسندگان
چکیده
Defense against biotic or abiotic stresses is one of the benefits of living in symbiosis. Leaf-cutting ants, which live in an obligate mutualism with a fungus, attenuate thermal and desiccation stress of their partner through behavioral responses, by choosing suitable places for fungus-rearing across the soil profile. The underground environment also presents hypoxic (low oxygen) and hypercapnic (high carbon dioxide) conditions, which can negatively influence the symbiont. Here, we investigated whether workers of the leaf-cutting ant Acromyrmex lundii use the CO2 concentration as an orientation cue when selecting a place to locate their fungus garden, and whether they show preferences for specific CO2 concentrations. We also evaluated whether levels preferred by workers for fungus-rearing differ from those selected for themselves. In the laboratory, CO2 preferences were assessed in binary choices between chambers with different CO2 concentrations, by quantifying number of workers in each chamber and amount of relocated fungus. Leaf-cutting ants used the CO2 concentration as a spatial cue when selecting places for fungus-rearing. A. lundii preferred intermediate CO2 levels, between 1 and 3%, as they would encounter at soil depths where their nest chambers are located. In addition, workers avoided both atmospheric and high CO2 levels as they would occur outside the nest and at deeper soil layers, respectively. In order to prevent fungus desiccation, however, workers relocated fungus to high CO2 levels, which were otherwise avoided. Workers' CO2 preferences for themselves showed no clear-cut pattern. We suggest that workers avoid both atmospheric and high CO2 concentrations not because they are detrimental for themselves, but because of their consequences for the symbiotic partner. Whether the preferred CO2 concentrations are beneficial for symbiont growth remains to be investigated, as well as whether the observed preferences for fungus-rearing influences the ants' decisions where to excavate new chambers across the soil profile.
منابع مشابه
Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis.
Leaf-cutting ants such as Acromyrmex octospinosus live in obligate symbiosis with fungi of the genus Leucoagaricus, which they grow with harvested leaf material. The symbiotic fungi, in turn, serve as a major food source for the ants. This mutualistic relation is disturbed by the specialized pathogenic fungus Escovopsis sp., which can overcome Leucoagaricus sp. and thus destroy the ant colony. ...
متن کاملAnt-fungus species combinations engineer physiological activity of fungus gardens.
Fungus-gardening insects are among the most complex organisms because of their extensive co-evolutionary histories with obligate fungal symbionts and other microbes. Some fungus-gardening insect lineages share fungal symbionts with other members of their lineage and thus exhibit diffuse co-evolutionary relationships, while others exhibit little or no symbiont sharing, resulting in host-fungus f...
متن کاملThe Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens
The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large sca...
متن کاملHygienic Behavior, Liquid-Foraging, and Trophallaxis in the Leaf-Cutting Ants, Acromyrmex subterraneus and Acromyrmex octospinosus
Neotropical leaf-cutting ants (tribe Attini) live in obligate symbiosis with fungus they culture for food. To protect themselves and their fungus garden from pathogens, they minimize the entry of microorganisms through mechanical and chemical means. In this study, focusing on the species Acromyrmex subterraneus and A. octospinosus, (Hymeoptera: Formicidae). Self- and allo-grooming behavior were...
متن کاملInsect symbioses: a case study of past, present, and future fungus-growing ant research.
Fungus-growing ants (Attini: Formicidae) engage in an obligate mutualism with fungi they cultivate for food. Although biologists have been fascinated with fungus-growing ants since the resurgence of natural history in the modern era, the early stages of research focused mainly on the foraging behavior of the leaf-cutters (the most derived attine lineage). Indeed, the discovery that the ants act...
متن کامل